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Abstract

NETWORK ANOMALY DETECTION
Sihan Zeng

A dissertation submitted to The University of Manchester
for the degree of Bachelor of Science, 2024

With the rapid development of internet technology, cybersecurity has become a 
global focus. Although existing Intrusion Detection Systems (IDS) can protect net-
works from unauthorized access threats to some extent, these traditional technologies 
are often inadequate when facing increasingly complex cyberattacks.

Machine Learning (ML) technology, with its powerful data analysis and pattern 
recognition capabilities, offers a new way to detect anomalous network behaviours. By 
learning and analyzing network traffic data, ML algorithms can effectively identify and 
classify normal and abnormal traffic. T his p roject a ims t o e xplore a nd e valuate the 
effectiveness of different ML algorithms in network anomaly detection.

This research is based on two trustworthy open-source datasets, CIC IOT23 and 
UGR’16, which respectively represent the network traffic characteristics i n t he Inter-
net of Things (IoT) environments and large-scale network environments. After basic 
exploration of various ML algorithms for network anomaly detection, this project has 
selected three representative ML algorithms for further study: Random Forest, Convolu-
tional Neural Networks (CNN), and Support Vector Machine (SVM). These algorithms 
are widely applied in the fields of data classification and pattern recognition and have 
shown good performance. Experimental results indicate that these three ML algorithms 
can achieve high accuracy and detection efficiency in network anomaly detection tasks.
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Chapter 1

Introduction

My project aims to implement and compare different machine learning algorithms on
two distinct network flow datasets. Primarily, three algorithms were implemented: Ran-
dom Forest, SVM, and CNN. The two datasets used are CIC IOT23 and UGR’16. Mod-
els based on these three algorithms were trained on these two datasets. The performance
of these models in classifying different types of network flows was evaluated. Finally,
there are three trained models for each dataset, six models in total. To understand how
different algorithms perform in network anomaly detection, my project studies and com-
pares the results these models generated as classifiers. It also aims to expose the unique
advantages and potential disadvantages of using these algorithms to recognize and clas-
sify network flows. Since CIC IOT23 and UGR’16 are two large datasets obtained from
the real Internet environment, this project can evaluate the applicability and effective-
ness of the three algorithms in real-world.

Before training the models, the datasets were sampled and pre-processed to ensure
the samples were available and suitable for model training. During the model training
phase, special attention was paid to the adjust of hyperparameters and model structures
to ensure the models could fully learn and accurately classify different types of net-
work flows. Furthermore, the SHAP method was adopted to evaluate the importance of
features, enabling this project to explore the key factors affecting model performance.

Overall, through comprehensive comparison and in-depth analysis, my project aims
to identify machine learning algorithms that are more effective and accurate in network
anomaly detection. Through experimental verification, this project demonstrates the

11



12 CHAPTER 1. INTRODUCTION

application potential of Random Forest, CNN, and SVM in network anomaly detection.

1.1 Motivation

Before machine learning techniques were applied to network anomaly detection, tradi-
tional IDS was primarily based on signature-based and behavior analysis techniques.
These techniques were effective in detecting known anomalies, but they were facing
some important flaws. Firstly, the traditional IDS based on matching signature and
rules are weak at detecting zero-day attacks and unknown threats. What’s more, IDS
based on signature might have a high false-positive rate. Furthermore, as a lot of new
threats appear, signatures databases need maintenance very often, which comes with
high costs and leads to detection delays.

Hence, the machine learning techniques were introduced to network anomaly de-
tection to overcome the above flaws. There are some advantages of network anomaly
detection systems with machine learning. Firstly, IDS with machine learning can learn
the difference between normal and abnormal behaviours of network flows to recognize
unknown and zero-day attacks. Secondly, through learning the patterns of the network
flows, IDS with machine learning can reduce the false-positive rate, since they can tell
if the flow is normal based on the many features, not only a few key signatures. What’s
more, machine learning models can continuously learn from the latest network flow data
and implement incremental learning to adapt to the changeable and unpredictable Inter-
net environment. This approach may reduce a lot of cost compared to the traditional
IDS.

1.2 Objectives

Further in the context discussed in Chapter 1, there were a few main objectives of this
project. Firstly, I need to choose what machine learning algorithms should be imple-
mented and evaluated. After research that is discussed in Section 2.1.1, Random Forest,
CNN and SVM are selected. Secondly, suitable datasets should be selected, which
should not be outdated and whose features and labels should be proper for machine
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learning algorithms to learn and make classifications. CIC IoT23 and UGR’16 are se-
lected as discussed in Section 2.3. What’s more, different models with selected algo-
rithms need to be evaluated and compared by different metrics like accuracy, recall,
precision, and F1-Score. And finally, to display the results of the model performance
more intuitively, visualization should be implemented.

1.3 Report Structures

This report includes four main sections. First, it illustrates the technical background
information for the project, including machine learning algorithms and how they are
used in network anomaly detection, and an introduction to the open-source network
flows dataset. Second, there is the description of my design and implementation of
the machine learning models for network anomaly detection. Before the models are
trained, detailed decisions and information of how the dataset should be preprocessed
are discussed. It also discusses how models are designed to be a classifier of network
flows and how they should be evaluated. After that, there will be an explanation of how
I implemented the machine learning models, and how they can be used to classify the
network flows among the two datasets. And finally, the results of my models will be
evaluated, and a conclusion will be discussed.



Chapter 2

Background

In this chapter, the technical background information needed in this project will be
discussed. First, I will discuss the basic concepts of network anomaly detection, and
some disadvantages of traditional network anomaly detection systems. Then, I will
discuss how machine learning techniques are used to help improve the flaws mentioned
above. I will also provide detailed information on which machine learning algorithms
are selected. After that, I will discuss the selected datasets and provide an introduction
to them.

2.1 Network Anomaly Detection

Network anomaly detection includes the identification and analysis of unusual patterns
or behaviours in network traffic that deviate from the normal flows. It can indicate the
potential problems like equipment failures or cyber attacks. Network anomaly detection
is crucial for the maintenance of network integrity and security, as it can detect issues
early and prevent network disruption or data damage.[1]

2.1.1 Traditional Network Anomaly Detection Systems

Basically, there are two types of anomaly detection systems. One is Signatures or
knowledge-based, and the other is Baseline or statistical-based. Signatures or knowledge-
based detection relies on matching predefined patterns or characteristics, such as IP ad-
dresses or specific packet content. Baseline or statistical-based detection uses historical

14



2.2. MACHINE LEARNING ALGORITHM 15

data to establish a normal behavior pattern, such as the typical number of TCP con-
nections, and identifies anomalies when current activities significantly deviate from this
established baseline.[1] As the internet environment is changing and developing very
fast, the traditional network anomaly detection systems based on signature and baseline
show their weaknesses when detecting changeable network traffic. For example, normal
traffic may turn into anomaly within a short period of time. To recognize and classify
the dynamic traffic, manually adding signatures and baselines is becoming very ineffi-
cient and expensive. What’s more, this will also lead to to delays in anomaly detection .
Therefore, the application of machine learning techniques to network anomaly detection
is very important.

2.1.2 Application of Machine Learning in Network Anomaly Detec-
tion

The characteristics of data extracted from network traffic are large amounts, noisy, and
high-dimensional.[2] For traditional network anomaly detection systems, dealing with
these characteristics is very difficult, which may lead to problems of high false-positive
rates and low accuracy. To avoid the disadvantages of traditional network anomaly
detection systems, machine learning techniques are applied to this field. As a statistical-
based analytical tool, machine learning techniques have been widely discussed and ap-
plied across various fields. In the case of known attacks, machine learning can under-
stand their characteristics based on knowledge learned from existing data. For unknown
attacks, machine learning can identify outliers through data patterns. Machine learn-
ing can also build various models according to the required abilities.[3] In this project,
supervised models are trained to classify different classes of network flows, thus the
models can identify malicious and benign network behaviors.

2.2 Machine Learning Algorithm

Basically, there are four types of machine learning techniques: Supervised Learning
(SL), Unsupervised Learning (UL), Semi-Supervised Learning (SSL) and Reinforce-
ment Learning. In the field of network anomaly detection, they have their own advan-
tages and disadvantages. SL make predictions after being trained with a large, labelled
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dataset, and its performance can be validated through labelled data. Its predictions are
more reliable when facing conditions similar to the training set. However, when SL
encounters unfamiliar data, error rate of predictions increases. UL makes predictions
without labelled data being passed. It can detect new threats with patterns distinct from
normal data. However, it could be very computing-consuming when facing complex
scenarios and making classifications. SSL can initialize supervised learning with a lim-
ited amount of labelled data. It gains more confidence from labelled data than UL. How-
ever, it has the disadvantage that incorrectly predicted unlabeled data could mislead the
classifier. RL uses a method called trial and error to test all possible state-action pairs to
find the best long-term reward strategy. It is suited for complex problems but it is very
resource-intensive.[3]

2.2.1 Algorithm Selections

The primary objective of this project is trying to train different machine learning mod-
els to detect network anomaly, to compare how machine learning helps with network
anomaly detection and to compare their performance. It is obvious that Supervised
Learning can help to reach the objective more easily, since it is intuitive and effective to
evaluate the performance of SL models. For many popular network traffic datasets (e.g.
UNSW-NB15 Dataset, NSL-KDD, UGR’16, CIC IoT23), it is common that they are
labelled with different classes. There are basically 6 machine learning algorithms for
supervised learning, which are linear regression, logistic regression, decision trees, ran-
dom forest, support vector machines (SVM) and Neural Networks. Random Forest is a
classifier which can be used for classification or regression, which is also considered as
ensemble learning as it is based on decision tree.[4] The characteristics of random for-
est include diversity, efficiency, and flexibility. It can handle various data anomalies and
noise, get results faster when processing large-scale datasets and can be easily adapted
to different datasets. Hence, random forest is an algorithm that is ideal for network
anomaly detection and has been widely used. When investigating the characteristics of
the network traffic datasets, it is obvious that most of them contain many features, which
makes those data high-dimensional. Table 2.1 shows the number of features and classes
in different popular datasets. The Support Vector Machine (SVM) operates by finding
the hyperplane that separates different classes best in the feature space and maximizing
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UNSW-NB15 NSL-KDD UGR’16 CIC IoT23
Features 42 41 9 46
Classes 2 2 9 34

Table 2.1: Number of Features and Classes of Different Datasets

the margin between the closest points of the classes. To obtain the objective of this
project, SVM is chosen for its advantage in handling high dimensional and nonlinear
data, which are the characteristics of network traffic data.[5] A Convolutional Neural
Network is a class of deep learning models. A CNN is composed of convolution, pool-
ing, and fully connected layers. In this project, CNN is chosen for the ability to deal
with high dimensional network traffic data. And CNN can deal with the complexity
of network traffic patterns by modeling it, based on its deep learning capabilities effi-
ciently. Additionally, CNN can automatically and adaptively learn spatial hierarchies
of features of network traffic data, which makes it able to classify network traffic as
different classes in a high accuracy.[6]

2.3 Dataset Introduction

To achieve the objectives of this project, the network traffic dataset should satisfy the
following characteristics. First, the dataset should be of a large scale. Only a dataset
that is large enough, could allow the machine learning models to learn the patterns
inside the data from them and gain generalization ability. Second, the dataset should
contain different classes of network behaviour, including normal traffic and different
types of network attacks such as DDoS attack, anomaly scan and so on. Only trained by
a dataset with great diversity, the machine learning models can have the ability to detect
different types of network traffic. Third, the dataset should not be outdated. As the
network environment changes very quickly, the patterns of network attacks also change
and develop rapidly. If the dataset is too old to maintain timeliness, the patterns that
machine learning models learn form it will not be able to detect the network attacks that
are up-to-date. Moreover, it’s also meaningless to evaluate their performances since
they may not work as expected when facing the real and new network attacks. What’s
more, the network traffic among the dataset should have a great quality, Data with low
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quality would improve the difficulty for training machine learning models, leading to
over-fitting or low performance. Lastly, the network traffic flows within the dataset
should be labelled. As mentioned above, our objective is to evaluate the performance
of different machine learning algorithms. Only with a dataset that is properly labelled
can our evaluation be easier and more credible. Therefore, for this project, I’ve chosen
CIC IoT23 and UGR’16 as the datasets for machine learning models to train on.

2.3.1 CIC IoT23

CIC IoT23 is a new realistic IoT attack dataset. This dataset is built using an extensive
topology, which is composed of a few different kinds of real IoT devices. And in this
topology, IoT devices act as attackers and victims.[7] In this dataset, there are 33 types
of attacks, and they are separated into 7 classes. To describe the network flows, there
are 46 features for each network flow. The details of the features are described in Table
2.2. And the 7 classes of the network attacks are DDoS, DoS, Mirai, Spoofing, Recon,
Web, and BruteForce. However, the numbers of different classes are not even, for ex-
ample, the DDoS class has the most significant ratio among the dataset, which is almost
78%. The uneven is caused by the implement when creating this dataset. During the
implementation of dataset creation, DDoS attacks are executed against all devices and
that’s why it has the largest number. Meanwhile, web-based attacks are only executed
against the devices supporting web applications.[7] Figure 2.1 illustrates the number
of instances for different classes. The advantages of this dataset are they are collected
from the real attacks in IoT devices, hence in the aspect of doing research about real-
istic network anomaly detection, it is meaningful. And it has a very large scale, which
can help the machine learning models to gain a reasonable robustness and generaliza-
tion ability. What’s more, all data among this dataset is well structured and has a high
quality. However, the biggest disadvantage of it is the uneven distribution of different
classes. And this uneven distribution has led to some problems when training machine
learning models and forced me to abandon the web-based and BruteForce attacks later
in my experiment. This will be discussed in more detail in Section 4.
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Feature mean min median max
flow duration 5.765449 0 0 394357.2
Header Length 76705.96 0 54 9907148
Protocol type 9.06569 0 6 47
Duration 66.35072 0 64 255
Rate 9064.057 0 15.75423 8388608
Srate 9064.057 0 15.75423 8388608
Drate 5.46E-06 0 0 29.71522
fin flag number 0.086572 0 0 1
syn flag number 0.207335 0 0 1
rst flag number 0.090505 0 0 1
psh flag number 0.08775 0 0 1
ack flag number 0.123432 0 0 1
ece flag number 1.48E-06 0 0 1
cwr flag number 7.28E-07 0 0 1
ack count 0.090543 0 0 7.7
syn count 0.330358 0 0 12.87
fin count 0.099077 0 0 248.32
urg count 6.239824 0 0 4401.7
rst count 38.46812 0 0 9613
HTTP 0.048234 0 0 1
HTTPS 0.055099 0 0 1
DNS 0.000131 0 0 1
Telnet 2.14E-08 0 0 1
SMTP 6.43E-08 0 0 1
SSH 4.09E-05 0 0 1
IRC 1.50E-07 0 0 1
TCP 0.573834 0 1 1
UDP 0.211918 0 0 1
DHCP 1.71E-06 0 0 1
ARP 6.62E-05 0 0 1
ICMP 0.163722 0 0 1
IPv 0.999887 0 1 1
LLC 0.999887 0 1 1
Tot sum 1308.323 42 567 127335.8
Min 91.60735 42 54 13583
Max 181.9634 42 54 49014
AVG 124.6688 42 54 13583
Std 33.32481 0 0 12385.24
Tot size 124.6916 42 54 13583
IAT 83182526 0 83124522 1.68E+08
Number 9.498489 1 9.5 15
Magnitue 13.12182 9.165151 10.3923 164.8211
Radius 47.09498 0 0 17551.27
Covariance 30724.36 0 0 1.55E+08
Variance 0.096438 0 0 1
Weight 141.5124 1 141.55 244.6

Table 2.2: Details of features in CIC IoT23
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Figure 2.1: Number of instances for different classes of CIC IoT23

2.3.2 UGR’16

UGR’16 is a dataset composed of real anonymized network traffic flows collected from
a tier-3 ISP for 4 months. And it was collected by NetFlow traces capture.[8] To im-
prove the practicality, the researchers have simulated different kinds of real attacks, and
infused them into the dataset, which makes the dataset contain not only normal network
flows data, but also network attacks data which is big enough for testing and machine
learning model training. This dataset is divided into two parts: a CALIBRATION set
and a TEST set. The CALIBRATION set contains 4 months of real background net-
work traffic data gathered from ISP. And the TEST set includes another 5 weeks of real
background data while network attacks were embedded to it.[8] Eight types of network
attacks were implemented in the dataset, which are dos, nerisbotnet, scan11, scan44,
blacklist, anomaly-spam, anomaly-sshscan and anomaly-udpscan. One objective for
building this dataset was to study network attacks with consideration of traffic period-
icity, which has not been considered in this project. Therefore, we will only include
one week of data from the TEST set. To describe the patterns of network traffic flows,
there are nine features for each network flow, including IP, port, period, packets and so
on. The main advantages of this dataset are that it includes the realistic attack scenarios,
and machine learning models training with this data is about to detect attacks in the
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real internet environment. Furthermore, all data is labelled, as mentioned above, it can
help with the evaluation of the performance of machine learning models. Its large-scale
also contributes to improving the accuracy of the models. However, since this dataset
is gathered from the real network environment from ISP, it may contain flaws in data
quality. This results in some data being unusable due to missing features or duplication,
but these issues can be addressed in the data-preprocessing section.



Chapter 3

Design

In this section, we will discuss the methods and algorithms used in this project in detail.
Further information on how the datasets were preprocessed, as mentioned in the pre-
vious section, will be illustrated here. We will also thoroughly discuss the design and
implementation of the machine learning models referred to earlier.

During the data preprocessing stage, tasks such as cleaning, feature selection, sam-
pling, and splitting into training and testing sets are carried out to ensure the models
can effectively learn the data patterns. Then, we explore the design of three machine
learning models: Random Forest, SVM, and CNN. The implementation details of these
models are also discussed. Finally, we introduce the methods and tools used to evaluate
the models’ performance.

3.1 Data Preprocessing

In this section, we will explore the data processing for the CIC IoT23 and UGR’16
datasets separately. The process for CIC IoT23 is expected to be simpler than that for
UGR’16, as its data is in high-quality, which suggests it is almost ready for training
machine learning models. The primary task at hand is to sample the dataset. However,
the UGR’16 dataset requires more process due to some minor flaws and the need for
restructuring its features.

22
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Mean Median Min Max
276,252 239,887 211,834 451,498

Table 3.1: Numbers of flows in each .csv file

3.1.1 CIC IOT23

To analyse this dataset, first, we need to investigate the structure of the data. For the
dataset itself, there are 168 .csv files in total, the sizes of each of them vary from 60,000
KB to 120,000 KB. And the numbers of instances vary from 211,834 to 451,498, which
are illustrated in Table 3.1. The total size of the dataset is 13,431,798 KB. Due to
the large size of the dataset, it would be impossible to load all the data at once into
the memory and train the machine learning models with it. As the traditional machine
learning method Random Forest and SVM do not support incremental learning by their
nature, it is very challenging to implement incremental learning in Random Forest and
SVM.[9] Therefore, we can not simply take all data from the dataset, instead, we need
to sample from it and use the sampled dataset to train the models. Also, as illustrated
in Figure 2.1, we can see that the distribution of the data is very uneven. Hence, when
sampling the data, we need to take under-sampling strategy to make the training and
testing dataset even. When looking deeper into the numbers of instances for each class,
we can notice that the numbers of 2 classes, Web and BruteForce, are very small, which
brings the coincidence that models trained with these 2 classes are very difficult to
classify them, resulting in almost none of testing network flows being classified as Web
or BruteForce. And this influences the overall performance of models in a very bad way.
This problem has been explored and will be discussed in the Section 4.2. As a result,
we must drop these 2 classes, and extract an even sampled dataset with other classes.
Finally, we design to put all data from the dataset together, and randomly sample 40,000
flows from the whole dataset for each class (excluding Web and BruteForce) as training
set, and randomly sample 20,000 flows from the rest of the dataset for each class. And
the numbers of instances of each class in training and testing set are illustrated in Table
3.2.

In conclusion, for the CIC IOT23 dataset, we have taken the following steps to
preprocess the data. Firstly, we combined all data from 168 .csv files together. Secondly,
we removed flows of the Web and BruteForce classes. Thirdly, we extracted 40,000
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Training Testing
Benign 40,000 20,000
DDoS 40,000 20,000
DoS 40,000 20,000
Mirai 40,000 20,000
Recon 40,000 20,000
Spoofing 40,000 20,000

Table 3.2: Number of Each Class in Train Test Set in CIC IoT23

flows for each class to serve as the training set and 20,000 flows for each class to serve
as the test set.

3.1.2 UGR’16

As mentioned earlier in this project, the UGR’16 dataset is gathered from real Internet
environment from an ISP. It contains 23 weeks of network flows, and for each week,
the size of the dataset is around 80GB.[8] Therefore, the size of the whole dataset is
too large for us to train the machine learning models effectively. Regarding the CALI-
BRATION set, it consists mainly of normal network flows, while we need to train the
machine learning models not only with normal flows but also network attacks. Hence,
we focus on the TEST set, and choose the data from the first week of August in the
TEST set. Since the dataset for this week contains all 7 days’ data in one single .csv
file, we need to split them into separate days and work out their distribution. While
splitting them, we also notice that there are some flaws in the data. Not all flows in the
dataset are usable, which means some flows recorded in the dataset are not in the correct
format, lack some features, or are duplicate in some features, indicated by their numbers
of features being not 12 or some features being in wrong data type. Therefore, we will
only keep the usable flows when splitting the dataset. What’s more, the reason why net-
work traffic flows were labelled as blacklist is not about what these flows are doing, but
what they are. When the researchers were creating this dataset, they labelled the black-
list flows according to their IP only, hence the patterns among these flows could vary a
lot.[8] Therefore, we must remove the blacklist class from the dataset to achieve our ob-
jective, which is allowing the machine learning models to learn the patterns within the
data and classify network flows. Otherwise, the blacklist class may significantly affect
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Day Number of instances Size (KB)
1 123,186,619 7,590,197
2 126,837,542 7,804,402
3 125,070,667 7,703,453
4 121,658,121 7,487,820
5 119,236,848 7,333,370
6 111,696,037 6,870,789
7 120,685,717 7,441,426
Total 848,371,551 52,231,457

Table 3.3: Numbers and Size of dataset for each day of UGR’16

Day Background DOS Nerisbotnet Scan11 Scan44 Anomaly-Spam Anomaly-SSHScan Anomaly-UDPScan
1 120,779,166 783,640 151,525 76,284 406,077 47 8 989,872
2 125,204,583 784,186 151,641 78,282 370,198 248,650 2 0
3 124,285,649 391,527 151,964 48,139 188,554 4,830 4 0
4 120,263,351 783,842 151,490 83,310 376,128 0 0 0
5 117,867,837 782,356 151,368 68,278 367,007 0 2 0
6 104,462,147 783,901 152,419 92,234 366,955 5,838,381 0 0
7 97,517,366 783,680 82,168 92,491 402,284 21,807,728 0 0
Total 810,380,099 5,093,132 992,575 539,018 2,477,203 27,899,636 16 989,872

Table 3.4: Numbers of different classes in each day

the machine learning models, and result in low accuracy and poor performance of the
classifications made by the models. After finishing these works, we are able to separate
the data from day 1 to day 7 from this week’s dataset. And Table 3.3 illustrates the size
and number of instances of the dataset for each day.

After checking the table, we notice that the size of each day’s dataset is still too
large for our experiment to handle. Therefore, we cannot just simply take one dataset
from a random day and train our machine learning models on it. And we also need to
make sure that the train and test set we plan to use include sufficient and even data for
all classes. Therefore, it is necessary to investigate deeper and find out the distribution
of all classes on each day. Table 3.4 illustrates the number of flows for different classes
on each day.

From Table 3.4, we can clearly notice that the number of anomaly-sshscan sums up
to 16, which means that it is impossible for our machine learning models to learn this
class. And there’s not a single day that has all classes with a proper number for us to
train and test. Therefore, we need to concatenate them back together, and sample from
the whole dataset. And to investigate the usability of the dataset and if the features can
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td sp dp pr flg fwd stos pkt byt bpp bps
0.052 56097 443 TCP .AP.S. 0 0 3 190 63.333 3653.846
0.052 56096 443 TCP .AP.S. 0 0 3 190 63.333 3653.846
0.256 443 58676 TCP .AP.S. 0 0 6 5298 883 20695.31
0.28 55674 80 TCP .AP.S. 0 0 5 439 87.8 1567.857
0.828 42068 443 TCP .AP.S. 0 0 12 1829 152.417 2208.937
0.928 59669 443 TCP .AP... 0 0 3 274 91.333 295.259
0.992 0 769 ICMP .A.... 0 0 4 224 56 225.806
0.992 54213 53 UDP .A.... 0 0 2 130 65 131.048
1.068 49900 80 TCP .AP.S. 0 72 5 2019 403.8 1890.449

Table 3.5: Example of Network Flows without Label

be used to train, we need to look at the shape of the sample. Table 3.5 is an example of
one of the network flows extracted from the dataset, with labels removed.

And the features are as follows: duration (td), source port (sp), destination port (dp),
protocol (pr), flags (flg), forwarding status (fwd), type of service (stos), packet count
(pkt), byte count (byt), bytes per packet (bpp), bits per second (bps).[8] As we can see,
the protocol and flags are described by a text string, which is the data type that machine
learning algorithms cannot handle. Therefore, we need to convert them a into one-hot
encoding format. By analyzing other samples, we can find out there are seven types of
protocols in total, which are ’TCP’, ’ICMP’, ’UDP’, ’IPIP’, ’GRE’, ’ESP’, ’IPv6’. And
for the flags, it is a combination of the TCP flag indicators: URG (U), ACK (A), PSH
(P), RST (R), SYN (S), and FIN (F). These flags represent different control messages
used in the TCP protocol to manage the state of a network connection. To one-hot
encode the ‘pr’ (protocol) feature, we need to expand it into 7 distinct features. Each of
these new features indicates whether a specific protocol is used in each network flow,
marked by a 1 for presence and 0 for absence. In this case, only one out of seven
features would be marked as 1, with the rest of them set to 0. Similarly, we need to
expand the ‘flg’ (flags) feature into six features, each representing whether a specific
flag state is present. Unlike the protocol feature, the flags feature can have more than
one flag marked as 1, as multiple TCP flags can be set for a single packet, indicating
various states or actions of the network flow. What’s more, as the network flows are
gathered from the real Internet environment and were meant to be used to research
the periodicity of the network traffic, each sample comes with a timestamp. However,
our project is aimed at identifying the patterns of network flows to classify them, we
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td sp dp TCP ICMP UDP IPIP GRE ESP IPv6 flg u flg a flg p flg r flg s flg f fwd stos pkt byt bpp bps
0.12 25 44718 1 0 0 0 0 0 0 0 1 1 0 1 1 0 72 3 234 78 1950

Table 3.6: Example of One-hot Encoded Sample

don’t need the timestamp feature, and we don’t want the machine learning models to
be influenced by it. We decided to remove the timestamp. Otherwise, the machine
learning models may associate the attacks with a specific time rather than the behaviours
themselves, since there may be some connections between the attacks and the timestamp
among the dataset.[10] Similarly, we need the machine learning models to learn from
the flows’ behaviours, and not be limited by the IP. Because we know that some IPs are
malicious, just like the blacklist we mentioned before. If the machine learning models
learn well about the IP, they might perform very well in the test set, since likely most
attacks are executed by the same group of IPs. However, this is not reliable, because
the IPs are changing out of this dataset and the machine learning models may have
ignored the other hidden patterns in the data. Further more, among the samples, the
features ‘td’ (time duration), ‘pkt’ (packet) and ‘byt’ (byte) are considered in isolation.
Intuitively, the features can reveal more insights when they are connected to each other.
This is because analyzing these features together allows the machine learning models
to gain a deeper understanding of network traffic behaviour over time and to isolate
the abnormal network flows when the packets contain bytes varying form the normal
flows. To achieve this, we add the features ‘bpp’ (Bytes per packet) and ‘bps’ (Bytes per
second). In addition, as mentioned by Dion, it’s difficult for machine learning models to
distinguish between the class scan11 and scan44, and these two attacks are very similar.
They have similar effects on the victims, and solutions to them are both closing certain
ports.[10] Therefore, we decided to merge these two classes into one class. And the
sample after processing as mentioned above, should look like the one in Table 3.6. As
a summary, the following are what we have done to pre-process the UGR’16 dataset:
filtering out unusable data, removing blacklist data, removing anomaly-sshscan data,
removing IP, removing timestamp, calculating ‘bpp’ and ‘bps’, merging scann11 and
scan44 into one class.

Finally, we needed to sample from the dataset and split into training and testing sets.
We randomly sampled 20,000 flows for each class to create the training set. Then, we
sampled 20,000 flows for each class from the rest of the dataset to form the testing set.
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3.1.3 Normalization

The last step before using the dataset to train the machine learning models is data nor-
malization. Data normalization is an essential data-preprocessing step in machine learn-
ing, aiming to adjust the range of data values and normalize them to a same scale without
changing the distribution of the data.[11] It is essential for machine learning models as
it can help improve the models’ convergence speed and performance by mitigating the
issues related to value calculations. In this project, we look at two methods for normal-
ization, which are Min-Max Scaling and Z-Score normalization (or Standardization).
The formula for 0-1 Min-Max Scaling is given below:

Xnorm =
X −Xmin

Xmax −Xmin
(3.1)

The formula for Z-score normalization (Standardization) is as below, where µ is the
mean and σ is the standard deviation:

Xstd =
X −µ

σ
(3.2)

After Min-Max scaling, all values of data will be transformed into values within a fixed
range, which is from 0 to 1 in this example. It helps to reduce the pressure for ma-
chine learning models to calculate, however, it is very sensitive to the outlier values.
For example, if there’s a value significantly higher than the others, then the rest of the
values will be compressed into a very small range near 0, resulting in a gap within the
normalized range.

After applying standardization, the mean of the normalized values will be 0, and
their standard deviation will be 1. Unlike Min-Max scaling, Standardization shows
more tolerance to outliers. Having outliers in the dataset would not have a great impact
on the normalized data.

At the beginning, we had decided to use standardization for its better tolerance to-
wards outliers, which are very common in network traffic flows data. By checking Table
2.2, we found most features have a max value significantly higher than the mean value.
However, after we investigated deeper into the structure of CNN models, we realized
that CNN cannot take negative values. There are activation layers called ReLU in CNN,
and when numbers lower than 0 enter the activation layer, the ReLU turns them into
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0.[12] This means, if we normalize the data with Standardization and train the CNN
models with it, there would be nearly half of the data being dropped by being turned
into 0.

Therefore, we decided to use 0-1 Min-Max Scaling to normalize the data. To do so,
we trained a MinMaxScaler from python library Scikit-Learn with the training set and
stored the scaler for later usage. And every time we train or test a model, we apply the
scaler to normalize the dataset first.

3.2 Machine Learning Algorithms

In this section, we will go through the design of the machine learning algorithms imple-
mented in this project, which are Random Forest, SVM and CNN. We will discuss how
the models are trained, how structures of models are designed and how hyperparameters
are chosen.

3.2.1 Random Forest

Random Forest is a classifier based on decision trees and considered as an ensemble
machine learning method.[13] It is designed to improve accuracy and robustness by
combining the predictions of multiple decision trees. Basically, it classifies a sample
by having every single tree to make a classification and vote, and it chooses the class
by the majority voting. Figure 3.1 illustrates how Random Forest model works. For
the Random Forest model, there are two hyper parameters that can be adjusted: number
of trees and maximum depth of each tree. Generally, setting a higher number of trees
can lead to better model performance because by averaging more trees, the model can
reduce the risk of overfitting. However, this also increases the computational cost and
time needed for model training and classifying. Maximum depth is another important
parameter for Random Forest. It controls the maximum number of levels in each deci-
sion tree. A deeper tree can learn and model more complex patterns and relationships
by having more splits. However, setting this parameter too high can lead to overfitting,
as the model learns the patterns from the training data too well but also learns the noise,
which negatively affects its performance on the data it has never seen. Likely, setting the
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Figure 3.1: Illustration of Random Forest’s majority voting mechanism

maximum depth too low may result in underfitting, which means the model cannot cap-
ture the underlying patterns and relations in the data well, leading to poor performance
on the test set.

In this project, different numbers of trees and maximum depths have been chosen
to find an optimal balance between performance and computational cost. The numbers
of trees that we chose are [10, 50, 100, 200, 500], and numbers of maximum depth
are [10, 20, 30]. While implementing the Random Forest models, we will try all the
combinations of hyperparameters to find the best combination by implementing a grid
search. Grid search is a traditional method for hyperparameters optimization that finds
best hyperparameters space by making complete search over a subset given to it.[14]

To implement the Random Forest models, we need to use a machine learning library
of Python to train and evaluate the models. In this project, we decided to use Scikit-
learn. Scikit-learn is an open-source machine learning library for Python, aiming to
integrate the machine learning methods into Python code.[15] The key reason why we
choose Scikit-learn to implementation is its ease of use when implementing the Random
Forest model. It only requires a single line of code to define a Random Forest model.
The code we used to define our Random Forest model is as shown in code 3.1.
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� �
model = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =200 ,
max depth =10 , r a n d o m s t a t e =0)� �

Listing 3.1: Source Code for Random Forest

And to implement a Grid search to find the optimal hyperparameters, we need to
call the function GridSearchCV from Scikit-earn. The code we used to find optimal
hyperparameters using grid search with a 5-fold cross-validation is listed as code 3.2.� �
from s k l e a r n . m o d e l s e l e c t i o n import GridSearchCV
p a r a m g r i d = {

’ n e s t i m a t o r s ’ : [ 1 0 , 5 0 , 1 0 0 , 5 0 0 ] ,
’ max depth ’ : [ 1 0 , 2 0 , 3 0 ] ,
’ r a n d o m s t a t e ’ : [ 0 ]

}
g r i d s e a r c h = GridSearchCV ( R a n d o m F o r e s t C l a s s i f i e r ( ) ,
p a r a m g r i d , r e f i t =True , v e r b o s e =2 , cv =5)
g r i d s e a r c h . f i t ( X numpy , y numpy )� �

Listing 3.2: Source Code for Grid Search for Random Forest

3.2.2 SVM

SVM is a classifier that is based on convex optimization techniques. It can learn the
underlying patterns of different classes from the known dataset and make predictions
on the unknown dataset.[16] The core idea of SVM learning is to find a hyperplane
that maximizes the margin between the closest points of different classes, which are
known as support vectors. Figure 3.2 illustrates the hyperplanes found by SVM and
how the hyperplanes classify different classes of data. By maximizing the margin, it can
improve the model’s generalization ability when classifying unseen data. In our project,
the network traffic flows are not linearly separable, and the SVM uses the kernel trick to
map the original data into a higher-dimensional space where the flows become linearly
separable. Common kernels that SVM uses are the Linear Kernel, Polynomial Kernel,
and Radial Basis Function (RBF) Kernel. For the training of SVM model, there are
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Figure 3.2: Hyperplanes of SVM

a few hyperparameters that can be chosen, which are C, Kernel, and Gamma. C is a
regularization parameter that controls the tolerance of errors for individual data points.
Specifically, a smaller C value means the model will try to make the margin as big as
possible, however, this may result in some misclassifications for some data. Hence, C
is a parameter to balance the size of the margin and the accuracy of classifications. As
mentioned above, there are a few kernels that SVM can use. In this project, we chose
the RBF Kernel. With its non-linear properties, the RBF kernel can adapt to various
shapes of decision boundaries.[17] And this flexibility ensures that SVM models with
an RBF kernel can adapt to the network traffic flows in this project and perform well in
classification. The last hyperparameter we can adjust is gamma. The Gamma parameter
is used in the RBF kernel and determines the range of influence of a single training
example. Specifically, a smaller gamma value means the range of influence for each
example becomes larger, which could lead to a smoother decision boundary. On the
opposite, a larger gamma value means a smaller range of influence, which may result in
a more complex decision boundary and a higher risk of overfitting. Since the kernel is
decided, we need to find the optimal pair for C and gamma. The values for C we chose
are [0.1, 1, 10, 100], and the values for gamma are [1, 0.1]. Similarly to what we did
when training the Random Forest, we need to perform a grid search to find the optimal
hyperparameters.

Before we can train SVM models with CIC IoT23 and UGR’16 datasets, we need to
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perform feature selection to select the features necessary for training the SVM model.
As we mentioned above, SVM transforms data into a higher dimensional space to make
it linearly separable. Therefore, SVM models are very sensitive to the number of fea-
tures, especially since our datasets contain many features. As a result, feature selec-
tion must be carried out to reduce the training time for SVM models and improve its
performance.[18] We can only train SVM with features that are important, otherwise,
the training process will take too long, and its accuracy will be low. Therefore, we in-
troduce SHAP algorithm to evaluate the feature importance. SHAP (SHapley Additive
exPlanations) is a game-theoretic approach used to explain the output of any machine
learning model. SHAP values assigned to each feature represent their contribution to
the model’s output, encoding the importance a model places on a feature.[19] There-
fore, by computing SHAP values, we can understand which features are important for
classification for the network traffic flows. After that, we can choose the features with
high importance and train the SVM models exclusively with those only.

To implement the feature selection, we decided to use a Python library called Ex-
plainerDashboard to calculate the SHAP values, which will be discussed later in Section
3.3. To train the SVM models and perform the grid search, we need to use the python
library Scikit-learn, which is mentioned above and used to train Random Forest models.
The code listing in 3.3 provides a sample for defining a SVM model.� �
model = SVC( k e r n e l = ’ r b f ’ , C=100 , gamma=1 ,
r a n d o m s t a t e =0 , v e r b o s e =2 , p r o b a b i l i t y =True )� �

Listing 3.3: Source Code for SVM

Code 3.4is the code for performing grid search.� �
p a r a m g r i d = {

’C ’ : [ 0 . 1 , 1 , 1 0 ] ,
’gamma ’ : [ 1 , 0 . 1 ] ,
’ k e r n e l ’ : [ ’ r b f ’ ]

}
g r i d s e a r c h = GridSearchCV (SVC ( ) , p a r a m g r i d ,
r e f i t =True , v e r b o s e =2 , cv =5)� �

Listing 3.4: Source Code for Grid Search for SVM
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3.2.3 CNN

CNN has been used in many fields for its advantage in handling high dimensional and
non-linear data.[6] To learn the patterns underlying among the data, there are some
essential layers in the structure of a CNN model.

Convolutional Layer: This layer is the core of CNN model. It extracts the features
from the input data and captures local features through convolution.

Activation Function: This function commonly follows each convolutional layer,
and its purpose is to introduce non-linearity into the network to help the network learn
complex patterns. In this project, we use the ReLU (Rectified Linear Unit) as our acti-
vation function.

Pooling Layer: A pooling layer should be applied after the convolution operation.
This layer can reduce the spatial dimensions and reduce the amount of computation. In
this project, the Max Pooling layer is implemented to the CNN model.

Fully Connected Layer: This layer should be applied towards the end of a CNN.
And in our CNN model, this layer performs classification.

Hence, we need to design a CNN model and train it with the network traffic dataset
to classify network behaviours. To make sure the CNN can learn the underlying patterns
from the network flows with non-linearity, we decided to apply two convolutional layers
to it. As the network traffic flows are not image data, we use convolution 1D layers.
Right after each convolution layer, there is a batch normalization layer, which can speed
up the convergence when training the model and prevent the model from overfitting to
some degree. Then an activation function is applied after each batch normalization layer,
and a pooling layer is applied after the activation function. After that, a flatten layer is
included to handle the data from convolution layers and pass it to the fully connected
layers. At the end of the CNN, we applied three fully connected layers, the first two
of which are followed by activation layers. The basic structure of the CNN model we
designed is illustrated in figure 3.3. Code 3.5 shows the source code for building this
CNN model with PyTorch.

As the network traffic data is not an image, it contains only 1 channel, which is why
the first convolutional layer in the CNN model was set to take in 1 channel data. Before
we start training the CNN model, we need to reshape the data into the shape that con-
volution layers can handle. In this case, the data was reshaped to (number of samples,
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1, number of features). After that, the data was transferred to a tensor and stored in a
tensor dataset. Then a data loader was created with a batch size, and the data loader was
used to train the CNN model. During the training process, there are three hyperparam-
eters that we can adjust, which are batch size, epochs, and learning rate. We use Adam
as our optimizer and calculate the loss with the Cross Entropy function. We designed to
fix the batch size to 64 because if it was set larger, the generalization ability would be
lower than expected, and the model would be difficult to converge during the training
process. But if it was set to smaller, the time it would take for training would be too
long. And the epochs and learning rate change during the whole training, which will be
discussed in Chapter 4.� �
c l a s s CNNModel ( nn . Module ) :

def i n i t ( s e l f , n u m c l a s s e s ) :
super ( CNNModel , s e l f ) . i n i t ( )
s e l f . conv1 = nn . Conv1d ( i n c h a n n e l s =1 ,
o u t c h a n n e l s =64 , k e r n e l s i z e =3)
s e l f . bn1 = nn . BatchNorm1d ( n u m f e a t u r e s =64)
s e l f . conv2 = nn . Conv1d ( i n c h a n n e l s =64 ,
o u t c h a n n e l s =128 , k e r n e l s i z e =3)
s e l f . bn2 = nn . BatchNorm1d ( n u m f e a t u r e s =128)
s e l f . poo l = nn . MaxPool1d ( k e r n e l s i z e =2)
s e l f . f l a t t e n = nn . F l a t t e n ( )
s e l f . f c 1 = nn . L i n e a r ( number o f Conv1d ou tpu t , 128)
s e l f . f c 2 = nn . L i n e a r ( 1 2 8 , 64)
s e l f . f c 3 = nn . L i n e a r ( 6 4 , n u m c l a s s e s )

def f o r w a r d ( s e l f , x ) :
x = F . r e l u ( s e l f . bn1 ( s e l f . conv1 ( x ) ) )
x = s e l f . poo l ( x )
x = F . r e l u ( s e l f . bn2 ( s e l f . conv2 ( x ) ) )
x = s e l f . poo l ( x )
x = s e l f . f l a t t e n ( x )
x = F . r e l u ( s e l f . f c 1 ( x ) )
x = F . r e l u ( s e l f . f c 2 ( x ) )
re turn s e l f . f c 3 ( x )� �

Listing 3.5: Source Code for CNN
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Figure 3.3: Structure of CNN model
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3.3 Evaluation and Visualization

The most important objective of this project is to evaluate the performances of different
machine learning models. Therefore, we need to find a method and metrics to evaluate
how well the models trained are performing. As stated by Hossin and Sulaiman, a
suitable evaluation metric is essential for achieving a better classifier.[20] As all models
trained are classifier, and all train and test data are labelled with specific classes, the
way to evaluate them is straightforward. The main metrics we are using for evaluation
are accuracy, recall, precision, F1-Score and the Confusion Matrix. Table 3.7 illustrates
the formulas for calculating and characteristics of different evaluation metrics.

Metrics Formula Evaluation Focus

Accuracy T P+T N
T P+FP+T N+FN Model’s overall correctness in predicting positives and negatives.

Precision T P
T P+FP Proportion of actual positives among the positive predictions.

Recall T P
T P+FN Proportion of actual positives that are correctly classified.

F1-Score 2×Precision×Recall
Precision+Recall The harmonic mean of precision and recall.

Table 3.7: Introduction to Different Metrics

These metrics are easy to calculate and obtain. In this project, we use Python func-
tions from Scikit-learn library. Code 3.6 lists the code to calculate the metrics mentioned
above. The first metric we look at to compare different models’ performance is overall
accuracy score. The overall accuracy tells us how the models work as classifiers in gen-
eral. After that, we look deeper to assess other metrics, and investigate the differences
between different models.

However, merely looking at different metrics does not provide sufficient information
about the models’ performance. Even if it could, it is not intuitive. Therefore, we re-
quire a tool to visualize the results obtained from different models. To do so, we decided
to use a Python library called ExplainerDashboard. ExplainerDashboard is designed
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� �
o v e r a l l a c c u r a c y = a c c u r a c y s c o r e ( p r e d s c l a s s e s , y t e s t )
r e c a l l = r e c a l l s c o r e ( p r e d s c l a s s e s , y t e s t ,
a v e r a g e =None , l a b e l s = c l a s s e s l a b e l s , z e r o d i v i s i o n =0)
p r e c i s i o n = p r e c i s i o n s c o r e ( p r e d s c l a s s e s , y t e s t ,
a v e r a g e =None , l a b e l s = c l a s s e s l a b e l s , z e r o d i v i s i o n =0)
f1 = f 1 s c o r e ( p r e d s c l a s s e s , y t e s t ,
a v e r a g e =None , l a b e l s = c l a s s e s l a b e l s , z e r o d i v i s i o n =0)� �

Listing 3.6: Source Code for Metrics Calculation

to create interactive dashboard and visualize the performance of the machine learning
models. It is compatible with models created with Scikit-learn. With ExplainerDash-
board, we can visualize the models’ performance with a few lines of code. Furthermore,
as mentioned earlier, ExplainerDashboard supports the investigation of SHAP values,
which can help find out the importance of each feature. Figure 3.4 is a screenshot from
ExplainerDashboard. As naturally supported in ExplainerDashboard, Random Forest

Figure 3.4: Screenshot of ExplainerDashboard

models and SVM models are very easy to analyze with ExplainerDashboard. We just



3.3. EVALUATION AND VISUALIZATION 39

need to load the processed test set and load the pre-trained models into the Explainer-
Dashboard, then all statistics will be calculated automatically. Source code to visualize
a Random Forest or SVM model with explainer dashboard is shown in Code 3.7.� �
model = l o a d ( ’ Randomfore s t IoT Even . j o b l i b ’ )
e x p l a i n e r = C l a s s i f i e r E x p l a i n e r ( model , X exp l a in ,
y e x p l a i n , l a b e l s = c l a s s e s l a b e l s )
d a s h b o a r d = E x p l a i n e r D a s h b o a r d ( e x p l a i n e r )� �

Listing 3.7: Source Code for Random Forest in Explainer Dashboard

Unfortunately, CNN models are not naturally supported in ExplainerDashboard. There-
fore, the code to integrate a CNN model into ExplainerDashboard would be much more
complicated. Firstly, we need to define the class for CNN Model again, including all
layers and parameters. Then, we need to define a class as the wrapper for the model,
which can adapt the model into formats that ExplainerDashboard can handle. To do
so, the wrapper class would accept a CNN model and test set as parameters and use
the model to make predictions on the testing set. As a result, the wrapper will out-
put a list containing all predictions, with each prediction contains probabilities for each
class, known as SoftMax probabilities, which sum up to 1. Hence, this behaviour meets
the expectation of ExplainerDashboard, allowing it to visualize the performance of the
model. Code 3.8 shows basic code for a CNN model wrapper.
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� �
c l a s s Model Wrapper ( ) :

def i n i t ( s e l f , model , d e v i c e ) :
s e l f . model = model
s e l f . d e v i c e = d e v i c e

def p r e d i c t p r o b a ( s e l f , X ) :
t e s t l o a d e r = p r e p r o c e s s (X)
p r e d s l i s t = [ ]
f o r i n p u t s in tqdm ( t e s t l o a d e r ) :

w i th t o r c h . n o g r a d ( ) :
i n p u t s = i n p u t s [ 0 ] . t o ( s e l f . d e v i c e )
o u t p u t s = s e l f . model ( i n p u t s )
# r e t u r n s o f t m a x p r o b a b i l i t y
p r e d s l i s t . append ( F . so f tmax ( o u t p u t s ,
dim = 1 ) . cpu ( ) . numpy ( ) )

p r e d s = np . c o n c a t e n a t e ( p r e d s l i s t , a x i s =0)
re turn p r e d s� �

Listing 3.8: Source Code for CNN in Explainer Dashboard



Chapter 4

Experiments

This section will begin by introducing the environment setup for the experiments in
this project. Then we will review the experiments that were performed to train and
compare the performance of all different algorithms, Random Forest, SVM and CNN
on two different datasets, CIC IoT23 and UGR’16. And the results will be presented
and discussed.

4.1 Environment Setup

The hardware used in this project includes a PC with Windows 10 OS, 32 GB RAM,
and an Nvidia 3070ti graphic card with 8GB graphics memory. At the beginning of
the experiments, everything works as expected, until we need to combine all data from
CIC IoT23 together and sample from them. The PC ran out of memory when all data
was loaded into memory. Therefore, the RAM of the PC was increased to 48 GB.

As for the software aspect, the main environment used in this project is Jupyter Note-
book. As mentioned above, we used many python libraries to accomplish the objectives
of this project. The main library used for Random Forest and SVM models training is
Scikit-learn. At the beginning, we chose TensorFlow as the deep learning python library
to train the CNN model. However, TensorFlow had stopped supporting Windows OS.
Hence, we would have to change to PyTorch, though some scripts have already been
written using TensorFlow. Fortunately, it turns out that PyTorch is a much better tool
for deep learning than TensorFlow.

41
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4.2 CIC IoT23

In this section, the details of the experiments performed with CIC IoT23 dataset will be
introduced. Since the code snippets for implementing the machine learning models are
already listed in the earlier section, the process and the results of the experiments will
be discussed more thoroughly.

As mentioned in section 3.3, before we started sampling from the original dataset
and create an even dataset for training and testing, we did some primitive experiments.
In these experiments, we did not attempt to make the dataset’s distribution even but
simply tried to use the entire dataset to train the machine learning models. And the result
was very clear that none of the models could recognize or classify the two classes, Web
and BruteForce. Figure 4.1 shows a confusion matrix from one of these experiments.
After that, we tried to undersample the classes with too much data to make the dataset
more even. However, the overall performance improved slightly, but the models still
cannot recognize or classify the two classes with too few instances. Finally, we did
what we said in section 3.1.1, the two classes, Web and BruteForce, were dropped form
the training and testing datasets.

Figure 4.1: Confusion Matrix for Primitive Experiments on CIC IOT
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4.2.1 Random Forest Results

As mentioned in section 3.2.1, a grid search was performed to find the optimal hy-
perparameters for Random Forest. The optimal hyperparameters that the grid search
identified were n estimators=500, max depth=30. To further investigate the impact of
different hyperparameters, we trained the Random Forest Model with different hyper-
parameters and record the overall accuracy. The accuracies are illustrated in table 4.1
and the time cost in seconds for training the model is illustrated in table 4.2.

Overall Accuracy max depth=10 max depth=20 max depth=30
estimator=10 0.9142 0.9434 0.9397
estimator=50 0.9165 0.9478 0.9491
estimator=100 0.9186 0.9483 0.9502
estimator=500 0.9209 0.949 0.9505

Table 4.1: Accuracy with Differen Hyperparameters on CIC IoT23 with Random Forest

Time Spent (Second) max depth=10 max depth=20 max depth=30
estimator=10 2.91 4.19 4.75
estimator=50 14.15 20.69 21.24
estimator=100 27.59 40.28 42.11
estimator=500 138.90 196.73 213.24

Table 4.2: Time Spent with Differen Hyperparameters on CIC IoT23 with Random
Forest

We can notice that increasing either estimator or max depth can both increase the
accuracy. Although increasing the max depth is more efficient since it improves accu-
racy without increasing processing time as increasing the number of estimators does.
Then, we used these hyperparameters to train the Random Forest model on the train-
ing set, and we got the result of performance. The overall accuracy of the model when
classifying the test set is 0.951. Table 4.3 shows different metrics for each class.

Figure 4.2 illustrates the classifications distribution.

With these results, it is clearly notice that Random Forest model performs nearly
perfectly for the classes DDoS, DoS and Mirai. However, the performance for classi-
fying Recon, Spoofing and Benign is not good enough, as these classes are likely to be
misclassified as one another.
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Class Recall Precision F1-Score
DDoS 0.999 0.998 0.999
DoS 0.999 0.999 0.999
Mirai 1 0.998 0.999
Recon 0.903 0.897 0.9
Spoofing 0.919 0.881 0.9
Benign 0.884 0.931 0.907

Table 4.3: Different Metrics for Each Class of Random Forest Model on CIC IoT23

Figure 4.2: Confusion Matrix of Random Forest Model on CIC IoT23

4.2.2 SVM Results

As mentioned in section 3.2.2, SVM models are very sensitive to the number of features,
and we need to perform feature selection to preserve important features for training only.
Hence, SHAP algorithm was applied using explainerdashboard, and SHAP values were
calculated for each feature. The result of these SHAP values is illustrated in figure 4.3.
We decided to preserve only the first 15 features for SVM model training and testing, as
the importance of other features is much lower and may pollute the model and extend the
training time. After that, we performed a grid search, which indicated that the optimal
hyperparameters are C=100 and gamma=1. Since training SVM models takes much
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Figure 4.3: SHAP Values for CIC IOT23

more time than training Random Forest (nearly 1 hour), we decided not to train SVM
models with all hyperparameters pairs to test the accuracy. With these hyperparameters,
we trained the SVM model and used it to classify the test set. The results obtained are
as follows. The overall accuracy of the model is 0.797. Table 4.4 shows all the metrics
for different classes. Figure 4.4 shows the confusion matrix.

Class Recall Precision F1-Score
DDoS 0.985 0.599 0.745
DoS 0.712 0.989 0.828
Mirai 0.999 0.995 0.997
Recon 0.648 0.823 0.725
Spoofing 0.891 0.644 0.747
Benign 0.724 0.736 0.73

Table 4.4: Different Metrics for Each Class of SVM Model on CIC IoT23

The results clearly show that SVM model only performs well when classifying Mirai
class but has low accuracy for all other classes.
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Figure 4.4: Confusion Matrix of SVM Model on CIC IoT23

4.2.3 CNN Results

To train the CNN model, we decided to train for 10 epochs with a learning rate of 0.001
first. In this case, the loss decreased fast and steadily, from 0.4435 to 0.3391. Then,
we reduced the learning rate to 0.0001 and trained the model for another 50 epochs.
We noticed that the loss is dropping in small steps. Finally, we set the learning rate to
0.00001 and trained it for 200 epochs. Figure 4.5 illustrates the trend of loss reduction
over epochs with different learning rates applied. After CNN model was trained, we
used it to classify the test set. And we got the overall accuracy of 0.9158. Table 4.5
shows all the metrics for different classes. Figure 4.6 shows the confusion matrix.

It’s obvious that the performance of CNN model is quite similar to the Random
Forest model, it performs well with the DDoS, DoS and Mirai classes, but accuracy
declines when classifying the Recon, Spoofing and Benign classes.
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Figure 4.5: Loss Reduction Trend over Epochs on CIC IOT23

Class Recall Precision F1-Score
DDoS 0.994 0.988 0.991
DoS 0.988 0.993 0.99
Mirai 0.998 0.998 0.998
Recon 0.834 0.84 0.837
Spoofing 0.849 0.814 0.831
Benign 0.833 0.863 0.848

Table 4.5: Different Metrics for Each Class of CNN Model on CIC IoT23
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Figure 4.6: Confusion Matrix of SVM Model on CIC IoT23

4.3 UGR’16

After training and testing different models on the CIC IoT23 dataset, we have gained
the better understanding of using the machine learning models as network anomaly
classifier. Next, we will discuss the details about implementing the experiments of
training and testing machine learning models on UGR’16 dataset.

4.3.1 Random Forest Results

Before training the Random Forest model, a grid search was performed to find the opti-
mal hyperparameters for the model as we done previously with CIC IoT23 dataset. The
result from the grid search indicated that the optimal hyperparameters are 100 for the
number of estimators and 20 for max depth. Also, we have trained different Random
Forest models with all combinations of hyperparameters and calculated the overall ac-
curacies for classification on the test set. The accuracies are illustrated in table 4.6 and
the time cost in seconds for training the model is illustrated in table 4.7.

In this case, we can observe that the Random Forest model has already reached its
best performance when the max depth was set to 20 and the number of estimators was
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Overall Accuracy max depth=10 max depth=20 max depth=30
estimator=10 0.9845 0.9964 0.9961
estimator=50 0.9956 0.9967 0.9964
estimator=100 0.9958 0.9967 0.9964
estimator=500 0.9957 0.9966 0.9963

Table 4.6: Accuracy with Differen Hyperparameters on UGR’16 with Random Forest

Time Spent (Second) max depth=10 max depth=20 max depth=30
estimator=10 0.61 0.72 0.72
estimator=50 2.98 3.62 3.56
estimator=100 5.72 7.27 7.22
estimator=500 26.34 32.55 33.31

Table 4.7: Time Spent with Differen Hyperparameters on CIC IoT23 with Random
Forest

50 or 100.
With the optimal hyperparameters, we started training the Random Forest model on

the training set. The overall accuracy we got when the trained model classified the test
set is 0.997. Different metrics for each class are illustrated in table 4.8. Figure 4.7 shows
the confusion matrix.

Class Recall Precision F1-Score
background 0.99 0.99 0.99
dos 0.999 1 1
nerisbotnet 0.995 0.992 0.994
scan 0.998 0.999 0.998
anomaly-spam 0.998 0.999 0.998
anomaly-udpscan 1 1 1

Table 4.8: Different Metrics for Each Class of Random Forest Model on UGR’16

By checking the results, it is shows that the Random Forest model performs very
well in classifying network traffics on UGR’16 dataset.

4.3.2 SVM Results

A grid search has been performed to find the optimal hyperparameters pair. And the best
combination of hyperparameters identified by the grid search is C=100 and gamma=1.
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Figure 4.7: Confusion Matrix of Random Forest Model on UGR’16

Unlike the situation in training SVM model on CIC IoT23 dataset, the time required to
train a SVM model on UGR’16 dataset is acceptable. Therefore, we can investigate the
overall accuracies of SVM models when set with different hyperparameters. Table 4.9
shows the accuracies and Table 4.10 shows the time spent on training and predicting.

Accuracy gamma=1 gamma=0.1
C=0.1 0.932 0.9185
C=1 0.9438 0.9297
C=10 0.9556 0.9393
C=100 0.9685 0.9522

Table 4.9: Accuracy with Differen Hyperparameters on UGR’16 with SVM

Then, we applied the optimal hyperparameters to train and test the SVM model on
UGR’16 dataset. The overall accuracy we got is 0.968. Table 4.11 illustrates the metrics
for different classes being predicted. Figure 4.8 shows the confusion matrix:

From the results, we can notice that the SVM model we trained generally performs
well in classifying the UGR’16 dataset. However, it has a little issue, which would
misclassify the background flows as nerisbotnet attacks.
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Time Spent (Second) gamma=1 gamma=0.1
C=0.1 383.52 763.66
C=1 298.91 445.38
C=10 265.6 363.71
C=100 289.91 301.1

Table 4.10: Time Spent with Differen Hyperparameters on CIC IoT23 with SVM

Class Recall Precision F1-Score
background 0.971 0.842 0.902
dos 0.998 1 0.999
nerisbotnet 0.883 0.986 0.932
scan 0.977 0.999 0.988
anomaly-spam 0.994 0.983 0.989
anomaly-udpscan 0.999 1 0.999

Table 4.11: Different Metrics for Each Class of SVM Model on UGR’16
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Figure 4.8: Confusion Matrix of SVM Model on UGR’16

4.3.3 CNN Results

When training the CNN model on the UGR’16 dataset, we initially trained for 10 epochs
with learning rate set to 0.001. After that, we performed training for 50 epochs with
learning rate set to 0.0001. Finally, we trained the model for another 50 epochs with
learning rate set to 0.00001. Figure 4.9 illustrates the trend of loss reduction over epochs
with different learning rates applied.

Figure 4.9: Loss Reduction Trend over Epochs on UGR’16

It is obvious that after 60th epoch, the loss the loss no longer decreased. Then we
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used this trained CNN model to make predictions on the test set, and the overall accuracy
we got is 0.994. Table 4.12 shows the important metrics for all classes. Figure 4.10
shows the confusion matrix.

Class Recall Precision F1-Score
background 0.985 0.977 0.981
dos 0.999 1 0.999
nerisbotnet 0.985 0.99 0.987
scan 0.997 0.999 0.998
anomaly-spam 0.996 0.996 0.996
anomaly-udpscan 0.999 1 0.999

Table 4.12: Different Metrics for Each Class of SVM Model on UGR’16

Figure 4.10: Confusion Matrix of CNN Model on UGR’16

From the results, it is clear that the CNN model performs nearly perfectly when
classifying different classes of network traffic flows in UGR’16 dataset.
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4.4 Result Analysis

Table 4.13 illustrates all the overall accuracies of all models in 2 datasets.

Overall Accuracy CIC IoT23 UGR’16
Random Forest 0.951 0.997
SVM 0.797 0.968
CNN 0.916 0.994

Table 4.13: Accuracies for All Models

First, we focus on the results of CIC IoT23 dataset. It’s obvious that when machine
learning models are trained based on this dataset, only the Random Forest model can
perform as expected. If we look at the Confusion Matrix in figure 4.2 and figure 4.6, we
can identify the main problem faced by machine learning models is in classifying the
Recon, Spoofing and Benign classes. Since this problem occurs in all three models, we
can deduce that data for these three classes have some underlying patterns in common,
which would make it difficult for the machine learning models to separate them.

Then, we consider the results of UGR’16 dataset. We observe that all 3 models
perform well when classifying the network traffic flows in UGR’16 dataset. Compared
to the model performance in CIC IoT23 dataset, we can make a judgement that in this
project, the UGR’16 dataset’s data quality is better than the data quality of CIC IoT23
dataset. We believe the method for network attacks implementation to the dataset may
be the reason that makes machine learning models easier to classify different classes
in UGR’16 dataset. The attacks that researchers conducted when creating UGR’16
dataset may have limited patterns, while the attacks in CIC IoT23 dataset might be
more changeable.

For both datasets, the SVM model don’t have a great performance. There could
be a few reasons for this problem. First, the data in both datasets is high-dimensional
and non-linear. During the learning of SVM, it tries to keep increasing the dimensions
to find linearity, which may lead to the Curse of Dimensionality.[21] And compared
to Random Forest and CNN, SVM model may lack generalization ability when facing
large-scale dataset.[22]

For CNN model in CIC IoT23 dataset, its performance did not meet our expectation.
At the beginning, we thought it could be improved by adding more layers to the CNN.
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However, the overall accuracy did not increase after more convolutional layers were
added. Then we consider that might be fixed by training for more epochs. However,
during the training from 300 to 500 epochs, the loss of CNN model did not decrease
at all. And as a result, the overall accuracy was worse than before, indicating that
the model was overfitting. However, when the CNN model with the same structure was
trained on the UGR’16 dataset, the speed for loss reduction over epochs was very quick.
As mentioned above, the loss is low enough when it reached the 60th epoch. And the
overall accuracy for classification is over 99%. When we look at the confusion matrix
in figure 4.10, it is obvious that the CNN model has high accuracy for all classes, unlike
its poor performance in some classes when classifying the CIC IoT23 dataset, which
means it successfully learned the underlying patterns among all classes and was able
to distinguish all classes with different patterns. Therefore, we believe the reason the
CNN model performs much better in the UGR’16 dataset than in the CIC IoT23 dataset
is due to the data quality of UGR’16 being better than that of CIC IOT23. The key
factor in the CNN model having a better performance in UGR’16 than in CIC IoT23 is
that all classes in UGR’16 are distinct from each other, but some classes in CIC IoT23
are mixed with each other.



Chapter 5

Conclusion

This section will discuss what have been achieved in this project, and what could be
improved and expanded in the future.

5.1 summary

At the beginning of this project, I successfully found the datasets for later usage in the
project, which are CIC IoT’23 and UGR’16. After that, the machine learning algo-
rithms were also found based on the investigation of the existing machine learning al-
gorithms for network anomaly detection. Then, primitive experiments were performed
to help me understand the datasets and algorithms. Furthermore, data analysis and data
pre-processing were executed to prepare for the later model training. In the model train-
ing part, different models with different hyperparameters were trained to seek the best
method to classify the network traffic flows. Finally, I analyzed the results for classifi-
cations from the trained machine learning models and compared their performances. To
visualize the results, I’ve integrated all models into the Python library ExplainerDash-
board.
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5.2 Achievements

This research successfully accomplished its objectives, which are training machine
learning models with different algorithms on different datasets and comparing their per-
formance. After the experiments and comparisons, we can conclude that with the same
presets as in this project, Random Forest and CNN models perform better than SVM
model. What’s more, due to the short training time, Random Forest can be considered
more effective than CNN.

Personally, I’ve learned and practised the techniques for pre-processing network
traffic data and training machine learning models on it, as well as the techniques to
adjust hyperparameters and analyse the results.

5.3 Future Work

In this project, there are two flaws that were overlooked. Firstly, feature selection wasn’t
applied to Random Forest models and CNN models. Feature selection is an essential
technique in machine learning, which can improve the models’ performance by helping
models to learn the more important patterns. Secondly, while experimenting on the
CIC IoT23, 2 classes were dropped due to their lack of samples. However, these 2
classes might still be learnable through some specialised techniques.

Looking ahead, I believe there are two objectives that can be achieved. The first
is to use unsupervised learning to train a model that can learn the patterns of normal
network traffic flows and classify whether the incoming network flows are behaving
normally. Initially, an unsupervised learning model, an Autoencoder, was planned to be
implemented. However, the training of this model did not proceed as expected, so it had
to be abandoned. The second objective, which I was eager to achieve before choosing
this project, is to apply machine learning models to real Internet environments to detect
anomalous network behaviours. Due to the challenges in implementation, it was not
feasible to undertake this within the scope of this project. However, with the foundation
laid by this project, I might be able to realise it in the future.
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